收藏成功
(推荐电脑端登录)
右上角查看我的术语->我的标签
| 原文 | 译文 | 详情 |
|---|---|---|
| Accumulated error backpropagation | 累积误差逆传播 | - |
| Activation Function | 激活函数 | - |
| Adaptive Resonance Theory/ART | 自适应谐振理论 | - |
| Addictive model | 加性学习 | - |
| Adversarial Networks | 对抗网络 | - |
| Affine Layer | 仿射层 | - |
| Affinity matrix | 亲和矩阵 | - |
| Agent | 代理 / 智能体 | - |
| Algorithm | 算法 | - |
| Alpha-beta pruning | α-β剪枝 | - |
| Anomaly detection | 异常检测 | - |
| Approximation | 近似 | - |
| Area Under ROC Curve/AUCRoc | 曲线下面积 | - |
| Artificial General Intelligence/AGI | 通用人工智能 | - |
| Artificial Intelligence/AI | 人工智能 | - |
| Association analysis | 关联分析 | - |
| Attention mechanism | 注意力机制 | - |
| Attribute conditional independence assumption | 属性条件独立性假设 | - |
| Attribute space | 属性空间 | - |
| Attribute value | 属性值 | - |
| Autoencoder | 自编码器 | - |
| Automatic speech recognition | 自动语音识别 | - |
| Automatic summarization | 自动摘要 | - |
| Average gradient | 平均梯度 | - |
| Average-Pooling | 平均池化 | - |
| Backpropagation Through Time | 通过时间的反向传播 | - |
| Backpropagation/BP | 反向传播 | - |
| Base learner | 基学习器 | - |
| Base learning algorithm | 基学习算法 | - |
| Batch Normalization/BN | 批量归一化 | - |
| Bayes decision rule | 贝叶斯判定准则 | - |
| Bayes Model Averaging/BMA | 贝叶斯模型平均 | - |
| Bayes optimal classifier | 贝叶斯最优分类器 | - |
| Bayesian decision theory | 贝叶斯决策论 | - |
| Bayesian network | 贝叶斯网络 | - |
| Between-class scatter matrix | 类间散度矩阵 | - |
| Bias | 偏置 / 偏差 | - |
| Bias-variance decomposition | 偏差-方差分解 | - |
| Bias-Variance Dilemma | 偏差 - 方差困境 | - |
| Bi-directional Long-Short Term Memory/Bi-LSTM | 双向长短期记忆 | - |
| Binary classification | 二分类 | - |
| Binomial test | 二项检验 | - |
| Bi-partition | 二分法 | - |
| Boltzmann machine | 玻尔兹曼机 | - |
| Bootstrap sampling | 自助采样法/可重复采样/有放回采样 | - |
| Bootstrapping | 自助法 | - |
| Break-Event Point/BEP | 平衡点 | - |
| Calibration | 校准 | - |
| Cascade-Correlation | 级联相关 | - |
| Categorical attribute | 离散属性 | - |
| Class-conditional probability | 类条件概率 | - |
| Classification and regression tree/CART | 分类与回归树 | - |
| Classifier | 分类器 | - |
| Class-imbalance | 类别不平衡 | - |
| Closed -form | 闭式 | - |
| Cluster | 簇/类/集群 | - |
| Cluster analysis | 聚类分析 | - |
| Clustering | 聚类 | - |
| Clustering ensemble | 聚类集成 | - |
| Co-adapting | 共适应 | - |
| Coding matrix | 编码矩阵 | - |
| COLT | 国际学习理论会议 | - |
| Committee-based learning | 基于委员会的学习 | - |
| Competitive learning | 竞争型学习 | - |
| Component learner | 组件学习器 | - |
| Comprehensibility | 可解释性 | - |
| Computation Cost | 计算成本 | - |
| Computational Linguistics | 计算语言学 | - |
| Computer vision | 计算机视觉 | - |
| Concept drift | 概念漂移 | - |
| Concept Learning System /CLS | 概念学习系统 | - |
| Conditional entropy | 条件熵 | - |
| Conditional mutual information | 条件互信息 | - |
| Conditional Probability Table/CPT | 条件概率表 | - |
| Conditional random field/CRF | 条件随机场 | - |
| Conditional risk | 条件风险 | - |
| Confidence | 置信度 | - |
| Confusion matrix | 混淆矩阵 | - |
| Connection weight | 连接权 | - |
| Connectionism | 连结主义 | - |
| Consistency | 一致性/相合性 | - |
| Contingency table | 列联表 | - |
| Continuous attribute | 连续属性 | - |
| Convergence | 收敛 | - |
| Conversational agent | 会话智能体 | - |
| Convex quadratic programming | 凸二次规划 | - |
| Convexity | 凸性 | - |
| Convolutional neural network/CNN | 卷积神经网络 | - |
| Co-occurrence | 同现 | - |
| Correlation coefficient | 相关系数 | - |
| Cosine similarity | 余弦相似度 | - |
| Cost curve | 成本曲线 | - |
| Cost Function | 成本函数 | - |
| Cost matrix | 成本矩阵 | - |
| Cost-sensitive | 成本敏感 | - |
| Cross entropy | 交叉熵 | - |
| Cross validation | 交叉验证 | - |
| Crowdsourcing | 众包 | - |
| Curse of dimensionality | 维数灾难 | - |
| Cut point | 截断点 | - |
| Cutting plane algorithm | 割平面法 | - |
| Data mining | 数据挖掘 | - |
| Data set | 数据集 | - |
| Decision Boundary | 决策边界 | - |
| Decision stump | 决策树桩 | - |
| Decision tree | 决策树/判定树 | - |
| Deduction | 演绎 | - |
| Deep Belief Network | 深度信念网络 | - |
| Deep Convolutional Generative Adversarial Network/DCGAN | 深度卷积生成对抗网络 | - |
| Deep learning | 深度学习 | - |
| Deep neural network/DNN | 深度神经网络 | - |
| Deep Q-Learning | 深度Q学习 | - |
| Deep Q-Network | 深度Q网络 | - |
| Density estimation | 密度估计 | - |
| Density-based clustering | 密度聚类 | - |
| Differentiable neural computer | 可微分神经计算机 | - |
| Dimensionality reduction algorithm | 降维算法 | - |
| Directed edge | 有向边 | - |
| Disagreement measure | 不合度量 | - |
| Discriminative model | 判别模型 | - |
| Discriminator | 判别器 | - |
| Distance measure | 距离度量 | - |
| Distance metric learning | 距离度量学习 | - |
| Distribution | 分布 | - |
| Divergence | 散度 | - |
| Diversity measure | 多样性度量/差异性度量 | - |
| Domain adaption | 领域自适应 | - |
| Downsampling | 下采样 | - |
| D-separation(Directed separation) | 有向分离 | - |
| Dual problem | 对偶问题 | - |
| Dummy node | 哑结点 | - |
| Dynamic Fusion | 动态融合 | - |
| Dynamic programming | 动态规划 | - |
| Eigenvalue decomposition | 特征值分解 | - |
| Embedding | 嵌入 | - |
| Emotional analysis | 情绪分析 | - |
| Empirical conditional entropy | 经验条件熵 | - |
| Empirical entropy | 经验熵 | - |
| Empirical error | 经验误差 | - |
| Empirical risk | 经验风险 | - |
| End-to-End | 端到端 | - |
| Energy-based model | 基于能量的模型 | - |
| Ensemble learning | 集成学习 | - |
| Ensemble pruning | 集成修剪 | - |
| Error Correcting Output Codes/ECOC | 纠错输出码 | - |
| Error rate | 错误率 | - |
| Error-ambiguity decomposition | 误差-分歧分解 | - |
| Euclidean distance | 欧氏距离 | - |
| Evolutionary computation | 演化计算 | - |
| Expectation-Maximization | 期望最大化 | - |
| Expected loss | 期望损失 | - |
| Exploding Gradient Problem | 梯度爆炸问题 | - |
| Exponential loss function | 指数损失函数 | - |
| Extreme Learning Machine/ELM | 超限学习机 | - |
| Factorization | 因子分解 | - |
| False negative | 假负类 | - |
| False positive | 假正类 | - |
| False Positive Rate/FPR | 假正例率 | - |
| Feature engineering | 特征工程 | - |
| Feature selection | 特征选择 | - |
| Feature vector | 特征向量 | - |
| Featured Learning | 特征学习 | - |
| Feedforward Neural Networks/FNN | 前馈神经网络 | - |
| Fine-tuning | 微调 | - |
| Flipping output | 翻转法 | - |
| Fluctuation | 震荡 | - |
| Forward stagewise algorithm | 前向分步算法 | - |
| Frequentist | 频率主义学派 | - |
| Full-rank matrix | 满秩矩阵 | - |
| Functional neuron | 功能神经元 | - |
| Gain ratio | 增益率 | - |
| Game theory | 博弈论 | - |
| Gaussian kernel function | 高斯核函数 | - |
| Gaussian Mixture Model | 高斯混合模型 | - |
| General Problem Solving | 通用问题求解 | - |
| Generalization | 泛化 | - |
| Generalization error | 泛化误差 | - |
| Generalization error bound | 泛化误差上界 | - |
| Generalized Lagrange function | 广义拉格朗日函数 | - |
| Generalized linear model | 广义线性模型 | - |
| Generalized Rayleigh quotient | 广义瑞利商 | - |
| Generative Adversarial Networks/GAN | 生成对抗网络 | - |
| Generative Model | 生成模型 | - |
| Generator | 生成器 | - |
| Genetic Algorithm/GA | 遗传算法 | - |
| Gibbs sampling | 吉布斯采样 | - |
| Gini index | 基尼指数 | - |
| Global minimum | 全局最小 | - |
| Global Optimization | 全局优化 | - |
| Gradient boosting | 梯度提升 | - |
| Gradient Descent | 梯度下降 | - |
| Graph theory | 图论 | - |
| Ground-truth | 真相/真实 | - |
| Hard margin | 硬间隔 | - |
| Hard voting | 硬投票 | - |
| Harmonic mean | 调和平均 | - |
| Hesse matrix | 海塞矩阵 | - |
| Hidden dynamic model | 隐动态模型 | - |
| Hidden layer | 隐藏层 | - |
| Hidden Markov Model/HMM | 隐马尔可夫模型 | - |
| Hierarchical clustering | 层次聚类 | - |
| Hilbert space | 希尔伯特空间 | - |
| Hinge loss function | 合页损失函数 | - |
| Hold-out | 留出法 | - |
| Homogeneous | 同质 | - |
| Hybrid computing | 混合计算 | - |
| Hyperparameter | 超参数 | - |
| Hypothesis | 假设 | - |
| Hypothesis test | 假设验证 | - |
| ICML | 国际机器学习会议 | - |
| Improved iterative scaling/IIS | 改进的迭代尺度法 | - |
| Incremental learning | 增量学习 | - |
| Independent and identically distributed/i.i.d. | 独立同分布 | - |
| Independent Component Analysis/ICA | 独立成分分析 | - |
| Indicator function | 指示函数 | - |
| Individual learner | 个体学习器 | - |
| Induction | 归纳 | - |
| Inductive bias | 归纳偏好 | - |
| Inductive learning | 归纳学习 | - |
| Inductive Logic Programming/ILP | 归纳逻辑程序设计 | - |
| Information entropy | 信息熵 | - |
| Information gain | 信息增益 | - |
| Input layer | 输入层 | - |
| Insensitive loss | 不敏感损失 | - |
| Inter-cluster similarity | 簇间相似度 | - |
| International Conference for Machine Learning/ICML | 国际机器学习大会 | - |
| Intra-cluster similarity | 簇内相似度 | - |
| Intrinsic value | 固有值 | - |
| Isometric Mapping/Isomap | 等度量映射 | - |
| Isotonic regression | 等分回归 | - |
| Iterative Dichotomiser | 迭代二分器 | - |
| Kernel method | 核方法 | - |
| Kernel trick | 核技巧 | - |
| Kernelized Linear Discriminant Analysis/KLDA | 核线性判别分析 | - |
| K-fold cross validationk | 折交叉验证/k倍交叉验证 | - |
| K-Means Clustering | K - 均值聚类 | - |
| K-Nearest Neighbours Algorithm/KNNK | 近邻算法 | - |
| Knowledge base | 知识库 | - |
| Knowledge Representation | 知识表征 | - |
| Label space | 标记空间 | - |
| Lagrange duality | 拉格朗日对偶性 | - |
| Lagrange multiplier | 拉格朗日乘子 | - |
| Laplace smoothing | 拉普拉斯平滑 | - |
| Laplacian correction | 拉普拉斯修正 | - |
| Latent Dirichlet Allocation | 隐狄利克雷分布 | - |
| Latent semantic analysis | 潜在语义分析 | - |
| Latent variable | 隐变量 | - |
| Lazy learning | 懒惰学习 | - |
| Learner | 学习器 | - |
| Learning by analogy | 类比学习 | - |
| Learning rate | 学习率 | - |
| Learning Vector Quantization/LVQ | 学习向量量化 | - |
| Least squares regression tree | 最小二乘回归树 | - |
| Leave-One-Out/LOO | 留一法 | - |
| linear chain conditional random field | 线性链条件随机场 | - |
| Linear Discriminant Analysis/LDA | 线性判别分析 | - |
| Linear model | 线性模型 | - |
| Linear Regression | 线性回归 | - |
| Link function | 联系函数 | - |
| Local Markov property | 局部马尔可夫性 | - |
| Local minimum | 局部最小 | - |
| Log likelihood | 对数似然 | - |
| Log odds/logit | 对数几率 | - |
| Logistic RegressionLogistic | 回归 | - |
| Log-likelihood | 对数似然 | - |
| Log-linear regression | 对数线性回归 | - |
| Long-Short Term Memory/LSTM | 长短期记忆 | - |
| Loss function | 损失函数 | - |
| Machine translation/MT | 机器翻译 | - |
| Macron-P | 宏查准率 | - |
| Macron-R | 宏查全率 | - |
| Majority voting | 绝对多数投票法 | - |
| Manifold assumption | 流形假设 | - |
| Manifold learning | 流形学习 | - |
| Margin theory | 间隔理论 | - |
| Marginal distribution | 边际分布 | - |
| Marginal independence | 边际独立性 | - |
| Marginalization | 边际化 | - |
| Markov Chain Monte Carlo/MCMC | 马尔可夫链蒙特卡罗方法 | - |
| Markov Random Field | 马尔可夫随机场 | - |
| Maximal clique | 最大团 | - |
| Maximum Likelihood Estimation/MLE | 极大似然估计/极大似然法 | - |
| Maximum margin | 最大间隔 | - |
| Maximum weighted spanning tree | 最大带权生成树 | - |
| Max-Pooling | 最大池化 | - |
| Mean squared error | 均方误差 | - |
| Meta-learner | 元学习器 | - |
| Metric learning | 度量学习 | - |
| Micro-P | 微查准率 | - |
| Micro-R | 微查全率 | - |
| Minimal Description Length/MDL | 最小描述长度 | - |
| Minimax game | 极小极大博弈 | - |
| Misclassification cost | 误分类成本 | - |
| Mixture of experts | 混合专家 | - |
| Momentum | 动量 | - |
| Moral graph | 道德图/端正图 | - |
| Multi-class classification | 多分类 | - |
| Multi-document summarization | 多文档摘要 | - |
| Multi-layer feedforward neural networks | 多层前馈神经网络 | - |
| Multilayer Perceptron/MLP | 多层感知器 | - |
| Multimodal learning | 多模态学习 | - |
| Multiple Dimensional Scaling | 多维缩放 | - |
| Multiple linear regression | 多元线性回归 | - |
| Multi-response Linear Regression /MLR | 多响应线性回归 | - |
| Mutual information | 互信息 | - |
| Naive bayes | 朴素贝叶斯 | - |
| Naive Bayes Classifier | 朴素贝叶斯分类器 | - |
| Named entity recognition | 命名实体识别 | - |
| Nash equilibrium | 纳什均衡 | - |
| Natural language generation/NLG | 自然语言生成 | - |
| Natural language processing | 自然语言处理 | - |
| Negative class | 负类 | - |
| Negative correlation | 负相关法 | - |
| Negative Log Likelihood | 负对数似然 | - |
| Neighbourhood Component Analysis/NCA | 近邻成分分析 | - |
| Neural Machine Translation | 神经机器翻译 | - |
| Neural Turing Machine | 神经图灵机 | - |
| Newton method | 牛顿法 | - |
| NIPS | 国际神经信息处理系统会议 | - |
| No Free Lunch Theorem/NFL | 没有免费的午餐定理 | - |
| Noise-contrastive estimation | 噪音对比估计 | - |
| Nominal attribute | 列名属性 | - |
| Non-convex optimization | 非凸优化 | - |
| Nonlinear model | 非线性模型 | - |
| Non-metric distance | 非度量距离 | - |
| Non-negative matrix factorization | 非负矩阵分解 | - |
| Non-ordinal attribute | 无序属性 | - |
| Non-Saturating Game | 非饱和博弈 | - |
| Norm | 范数 | - |
| Normalization | 归一化 | - |
| Nuclear norm | 核范数 | - |
| Numerical attribute | 数值属性 | - |
| Objective function | 目标函数 | - |
| Oblique decision tree | 斜决策树 | - |
| Occam's razor | 奥卡姆剃刀 | - |
| Odds | 几率 | - |
| Off-Policy | 离策略 | - |
| One shot learning | 一次性学习 | - |
| One-Dependent Estimator/ODE | 独依赖估计 | - |
| On-Policy | 在策略 | - |
| Ordinal attribute | 有序属性 | - |
| Out-of-bag estimate | 包外估计 | - |
| Output layer | 输出层 | - |
| Output smearing | 输出调制法 | - |
| Overfitting | 过拟合/过配 | - |
| Oversampling | 过采样 | - |
| Paired t-test | 成对t检验 | - |
| Pairwise | 成对型 | - |
| Pairwise Markov property | 成对马尔可夫性 | - |
| Parameter | 参数 | - |
| Parameter estimation | 参数估计 | - |
| Parameter tuning | 调参 | - |
| Parse tree | 解析树 | - |
| Particle Swarm Optimization/PSO | 粒子群优化算法 | - |
| Part-of-speech tagging | 词性标注 | - |
| Perceptron | 感知机 | - |
| Performance measure | 性能度量 | - |
| Plug and Play Generative Network | 即插即用生成网络 | - |
| Plurality voting | 相对多数投票法 | - |
| Polarity detection | 极性检测 | - |
| Polynomial kernel function | 多项式核函数 | - |
| Pooling | 池化 | - |
| Positive class | 正类 | - |
| Positive definite matrix | 正定矩阵 | - |
| Post-hoc test | 后续检验 | - |
| Post-pruning | 后剪枝 | - |
| potential function | 势函数 | - |
| Precision | 查准率/准确率 | - |
| Prepruning | 预剪枝 | - |
| Principal component analysis/PCA | 主成分分析 | - |
| Principle of multiple explanations | 多释原则 | - |
| Prior | 先验 | - |
| Probability Graphical Model | 概率图模型 | - |
| Proximal Gradient Descent/PGD | 近端梯度下降 | - |
| Pruning | 剪枝 | - |
| Pseudo-label | 伪标记 | - |
| Quantized Neural Network | 量子化神经网络 | - |
| Quantum computer | 量子计算机 | - |
| Quantum Computing | 量子计算 | - |
| Quasi Newton method | 拟牛顿法 | - |
| Radial Basis Function/RBF | 径向基函数 | - |
| Random Forest Algorithm | 随机森林算法 | - |
| Random walk | 随机漫步 | - |
| Recall | 查全率/召回率 | - |
| Receiver Operating Characteristic/ROC | 受试者工作特征 | - |
| Rectified Linear Unit/ReLU | 线性修正单元 | - |
| Recurrent Neural Network | 循环神经网络 | - |
| Recursive neural network | 递归神经网络 | - |
| Reference model | 参考模型 | - |
| Regression | 回归 | - |
| Regularization | 正则化 | - |
| Reinforcement learning/RL | 强化学习 | - |
| Representation learning | 表征学习 | - |
| Representer theorem | 表示定理 | - |
| reproducing kernel Hilbert space/RKHS | 再生核希尔伯特空间 | - |
| Re-sampling | 重采样法 | - |
| Rescaling | 再缩放 | - |
| Residual Mapping | 残差映射 | - |
| Residual Network | 残差网络 | - |
| Restricted Boltzmann Machine/RBM | 受限玻尔兹曼机 | - |
| Restricted Isometry Property/RIP | 限定等距性 | - |
| Re-weighting | 重赋权法 | - |
| Robustness | 稳健性/鲁棒性 | - |
| Root node | 根结点 | - |
| Rule Engine | 规则引擎 | - |
| Rule learning | 规则学习 | - |
| Saddle point | 鞍点 | - |
| Sample space | 样本空间 | - |
| Sampling | 采样 | - |
| Score function | 评分函数 | - |
| Self-Driving | 自动驾驶 | - |
| Self-Organizing Map/SOM | 自组织映射 | - |
| Semi-naive Bayes classifiers | 半朴素贝叶斯分类器 | - |
| Semi-Supervised Learning | 半监督学习 | - |
| semi-Supervised Support Vector Machine | 半监督支持向量机 | - |
| Sentiment analysis | 情感分析 | - |
| Separating hyperplane | 分离超平面 | - |
| Sigmoid functionSigmoid | 函数 | - |
| Similarity measure | 相似度度量 | - |
| Simulated annealing | 模拟退火 | - |
| Simultaneous localization and mapping | 同步定位与地图构建 | - |
| Singular Value Decomposition | 奇异值分解 | - |
| Slack variables | 松弛变量 | - |
| Smoothing | 平滑 | - |
| Soft margin | 软间隔 | - |
| Soft margin maximization | 软间隔最大化 | - |
| Soft voting | 软投票 | - |
| Sparse representation | 稀疏表征 | - |
| Sparsity | 稀疏性 | - |
| Specialization | 特化 | - |
| Spectral Clustering | 谱聚类 | - |
| Speech Recognition | 语音识别 | - |
| Splitting variable | 切分变量 | - |
| Squashing function | 挤压函数 | - |
| Stability-plasticity dilemma | 可塑性-稳定性困境 | - |
| Statistical learning | 统计学习 | - |
| Status feature function | 状态特征函 | - |
| Stochastic gradient descent | 随机梯度下降 | - |
| Stratified sampling | 分层采样 | - |
| Structural risk | 结构风险 | - |
| Structural risk minimization/SRM | 结构风险最小化 | - |
| Subspace | 子空间 | - |
| Supervised learning | 监督学习/有导师学习 | - |
| support vector expansion | 支持向量展式 | - |
| Support Vector Machine/SVM | 支持向量机 | - |
| Surrogat loss | 替代损失 | - |
| Surrogate function | 替代函数 | - |
| Symbolic learning | 符号学习 | - |
| Symbolism | 符号主义 | - |
| Synset | 同义词集 | - |
| T-Distribution Stochastic Neighbour Embedding/t-SNE | T - 分布随机近邻嵌入 | - |
| Tensor | 张量 | - |
| Tensor Processing Units/TPU | 张量处理单元 | - |
| The least square method | 最小二乘法 | - |
| Threshold | 阈值 | - |
| Threshold logic unit | 阈值逻辑单元 | - |
| Threshold-moving | 阈值移动 | - |
| Time Step | 时间步骤 | - |
| Tokenization | 标记化 | - |
| Training error | 训练误差 | - |
| Training instance | 训练示例/训练例 | - |
| Transductive learning | 直推学习 | - |
| Transfer learning | 迁移学习 | - |
| Treebank | 树库 | - |
| Tria-by-error | 试错法 | - |
| True negative | 真负类 | - |
| True positive | 真正类 | - |
| True Positive Rate/TPR | 真正例率 | - |
| Turing Machine | 图灵机 | - |
| Twice-learning | 二次学习 | - |
| Underfitting | 欠拟合/欠配 | - |
| Undersampling | 欠采样 | - |
| Understandability | 可理解性 | - |
| Unequal cost | 非均等代价 | - |
| Unit-step function | 单位阶跃函数 | - |
| Univariate decision tree | 单变量决策树 | - |
| Unsupervised learning | 无监督学习/无导师学习 | - |
| Unsupervised layer-wise training | 无监督逐层训练 | - |
| Upsampling | 上采样 | - |
| Vanishing Gradient Problem | 梯度消失问题 | - |
| Variational inference | 变分推断 | - |
| VC TheoryVC | 维理论 | - |
| Version space | 版本空间 | - |
| Viterbi algorithm | 维特比算法 | - |
| Von Neumann architecture | 冯 · 诺伊曼架构 | - |
| Wasserstein GAN/WGANWasserstein | 生成对抗网络 | - |
| Weak learner | 弱学习器 | - |
| Weight | 权重 | - |
| Weight sharing | 权共享 | - |
| Weighted voting | 加权投票法 | - |
| Within-class scatter matrix | 类内散度矩阵 | - |
| Word embedding | 词嵌入 | - |
| Word sense disambiguation | 词义消歧 | - |
| Zero-data learning | 零数据学习 | - |
| Zero-shot learning | 零次学习 | - |
| Polarity detection | 极性检测 | - |
| Exploding Gradient Problem | 梯度爆炸问题 | - |
| Knowledge Representation | 知识表征 | - |
| Spectral Clustering | 谱聚类 | - |
| Pooling | 池化 | - |
| Concept Learning System /CLS | 概念学习系统 | - |
| Confusion matrix | 混淆矩阵 | - |
| Out-of-bag estimate | 包外估计 | - |
| Laplacian correction | 拉普拉斯修正 | - |
| Hierarchical clustering | 层次聚类 | - |
| Cluster analysis | 聚类分析 | - |
| Discriminator | 判别器 | - |
| Clustering | 聚类 | - |
| Frequentist | 频率主义学派 | - |
| Nash equilibrium | 纳什均衡 | - |
| Weak learner | 弱学习器 | - |
| Bayes decision rule | 贝叶斯判定准则 | - |
| Affine Layer | 仿射层 | - |
| Error-ambiguity decomposition | 误差-分歧分解 | - |
| Multimodal learning | 多模态学习 | - |
| Laplace smoothing | 拉普拉斯平滑 | - |
| Multi-layer feedforward neural networks | 多层前馈神经网络 | - |
| Categorical attribute | 离散属性 | - |
| Max-Pooling | 最大池化 | - |
| Threshold | 阈值 | - |
| reproducing kernel Hilbert space/RKHS | 再生核希尔伯特空间 | - |
| General Problem Solving | 通用问题求解 | - |
| Deep Convolutional Generative Adversarial Network/DCGAN | 深度卷积生成对抗网络 | - |
| Local minimum | 局部最小 | - |
| Independent and identically distributed/i.i.d. | 独立同分布 | - |
| Noise-contrastive estimation | 噪音对比估计 | - |
| Positive definite matrix | 正定矩阵 | - |
| Euclidean distance | 欧氏距离 | - |
| Global Optimization | 全局优化 | - |
| Parse tree | 解析树 | - |
| Twice-learning | 二次学习 | - |
| Re-weighting | 重赋权法 | - |
| Restricted Isometry Property/RIP | 限定等距性 | - |
| Univariate decision tree | 单变量决策树 | - |
| Plurality voting | 相对多数投票法 | - |
| Consistency | 一致性/相合性 | - |
| Version space | 版本空间 | - |
| Bayesian decision theory | 贝叶斯决策论 | - |
| Post-hoc test | 后续检验 | - |
| Tensor Processing Units/TPU | 张量处理单元 | - |
| Co-adapting | 共适应 | - |
| Newton method | 牛顿法 | - |
| Clustering ensemble | 聚类集成 | - |
| Automatic speech recognition | 自动语音识别 | - |
| Latent semantic analysis | 潜在语义分析 | - |
| semi-Supervised Support Vector Machine | 半监督支持向量机 | - |
| Parameter estimation | 参数估计 | - |
| Harmonic mean | 调和平均 | - |
| T-Distribution Stochastic Neighbour Embedding/t-SNE | T - 分布随机近邻嵌入 | - |
| Affinity matrix | 亲和矩阵 | - |
| Disagreement measure | 不合度量 | - |
| Weight sharing | 权共享 | - |
| Attention mechanism | 注意力机制 | - |
| Lagrange duality | 拉格朗日对偶性 | - |
| Deep Belief Network | 深度信念网络 | - |
| Training error | 训练误差 | - |
| Lagrange multiplier | 拉格朗日乘子 | - |
| Conditional Probability Table/CPT | 条件概率表 | - |
| Algorithm | 算法 | - |
| Macron-R | 宏查全率 | - |
| Anomaly detection | 异常检测 | - |
| Average gradient | 平均梯度 | - |
| True Positive Rate/TPR | 真正例率 | - |
| Average-Pooling | 平均池化 | - |
| Support Vector Machine/SVM | 支持向量机 | - |
| Differentiable neural computer | 可微分神经计算机 | - |
| Manifold learning | 流形学习 | - |
| Bayes optimal classifier | 贝叶斯最优分类器 | - |
| False positive | 假正类 | - |
| Information gain | 信息增益 | - |
| Rule learning | 规则学习 | - |
| Rescaling | 再缩放 | - |
| Gain ratio | 增益率 | - |
| Bias | 偏置 / 偏差 | - |
| Non-ordinal attribute | 无序属性 | - |
| Dummy node | 哑结点 | - |
| Mutual information | 互信息 | - |
| Input layer | 输入层 | - |
| Reference model | 参考模型 | - |
| Induction | 归纳 | - |
| Featured Learning | 特征学习 | - |
| Naive bayes | 朴素贝叶斯 | - |
| Prepruning | 预剪枝 | - |
| Perceptron | 感知机 | - |
| Long-Short Term Memory/LSTM | 长短期记忆 | - |
| Hard margin | 硬间隔 | - |
| Principal component analysis/PCA | 主成分分析 | - |
| Conditional mutual information | 条件互信息 | - |
| Naive Bayes Classifier | 朴素贝叶斯分类器 | - |
| Parameter tuning | 调参 | - |
| Hesse matrix | 海塞矩阵 | - |
| Attribute conditional independence assumption | 属性条件独立性假设 | - |
| Similarity measure | 相似度度量 | - |
| Maximum margin | 最大间隔 | - |
| Non-Saturating Game | 非饱和博弈 | - |
| Stochastic gradient descent | 随机梯度下降 | - |
| Surrogate function | 替代函数 | - |
| Label space | 标记空间 | - |
| Component learner | 组件学习器 | - |
| Expected loss | 期望损失 | - |
| Subspace | 子空间 | - |
| Generalized Rayleigh quotient | 广义瑞利商 | - |
| Density-based clustering | 密度聚类 | - |
| Sigmoid functionSigmoid | 函数 | - |
| Singular Value Decomposition | 奇异值分解 | - |
| Hidden layer | 隐藏层 | - |
| Cost-sensitive | 成本敏感 | - |
| Break-Event Point/BEP | 平衡点 | - |
| Non-convex optimization | 非凸优化 | - |
| Residual Mapping | 残差映射 | - |
| Plug and Play Generative Network | 即插即用生成网络 | - |
| Tokenization | 标记化 | - |
| Statistical learning | 统计学习 | - |
| Markov Random Field | 马尔可夫随机场 | - |
| Machine translation/MT | 机器翻译 | - |
| Surrogat loss | 替代损失 | - |
| Paired t-test | 成对t检验 | - |
| Binary classification | 二分类 | - |
| Decision stump | 决策树桩 | - |
| Output layer | 输出层 | - |
| Isotonic regression | 等分回归 | - |
| Fine-tuning | 微调 | - |
| Genetic Algorithm/GA | 遗传算法 | - |
| Hypothesis | 假设 | - |
| Rectified Linear Unit/ReLU | 线性修正单元 | - |
| Probability Graphical Model | 概率图模型 | - |
| Cost matrix | 成本矩阵 | - |
| Natural language processing | 自然语言处理 | - |
| Base learner | 基学习器 | - |
| Output smearing | 输出调制法 | - |
| K-fold cross validationk | 折交叉验证/k倍交叉验证 | - |
| Gaussian Mixture Model | 高斯混合模型 | - |
| Extreme Learning Machine/ELM | 超限学习机 | - |
| Factorization | 因子分解 | - |
| Learner | 学习器 | - |
| Tria-by-error | 试错法 | - |
| Vanishing Gradient Problem | 梯度消失问题 | - |
| Deep Q-Network | 深度Q网络 | - |
| Addictive model | 加性学习 | - |
| Cascade-Correlation | 级联相关 | - |
| Activation Function | 激活函数 | - |
| Inductive Logic Programming/ILP | 归纳逻辑程序设计 | - |
| Feature vector | 特征向量 | - |
| Intrinsic value | 固有值 | - |
| Error Correcting Output Codes/ECOC | 纠错输出码 | - |
| Ordinal attribute | 有序属性 | - |
| Unsupervised layer-wise training | 无监督逐层训练 | - |
| Density estimation | 密度估计 | - |
| Self-Organizing Map/SOM | 自组织映射 | - |
| Reinforcement learning/RL | 强化学习 | - |
| Restricted Boltzmann Machine/RBM | 受限玻尔兹曼机 | - |
| Marginal distribution | 边际分布 | - |
| Robustness | 稳健性/鲁棒性 | - |
| Maximum weighted spanning tree | 最大带权生成树 | - |
| Convex quadratic programming | 凸二次规划 | - |
| Deep neural network/DNN | 深度神经网络 | - |
| Insensitive loss | 不敏感损失 | - |
| Autoencoder | 自编码器 | - |
| Variational inference | 变分推断 | - |
| Kernel trick | 核技巧 | - |
| Calibration | 校准 | - |
| Negative Log Likelihood | 负对数似然 | - |
| Connection weight | 连接权 | - |
| One shot learning | 一次性学习 | - |
| False negative | 假负类 | - |
| Dual problem | 对偶问题 | - |
| Negative correlation | 负相关法 | - |
| Local Markov property | 局部马尔可夫性 | - |
| Transductive learning | 直推学习 | - |
| Incremental learning | 增量学习 | - |
| Semi-Supervised Learning | 半监督学习 | - |
| Speech Recognition | 语音识别 | - |
| Fluctuation | 震荡 | - |
| Sampling | 采样 | - |
| Generalization error | 泛化误差 | - |
| Residual Network | 残差网络 | - |
| Hinge loss function | 合页损失函数 | - |
| Generalized Lagrange function | 广义拉格朗日函数 | - |
| Gradient boosting | 梯度提升 | - |
| K-Means Clustering | K - 均值聚类 | - |
| Classifier | 分类器 | - |
| Quantized Neural Network | 量子化神经网络 | - |
| Viterbi algorithm | 维特比算法 | - |
| Directed edge | 有向边 | - |
| Synset | 同义词集 | - |
| Decision Boundary | 决策边界 | - |
| Bias-variance decomposition | 偏差-方差分解 | - |
| NIPS | 国际神经信息处理系统会议 | - |
| Supervised learning | 监督学习/有导师学习 | - |
| Dimensionality reduction algorithm | 降维算法 | - |
| Attribute space | 属性空间 | - |
| Neural Machine Translation | 神经机器翻译 | - |
| Post-pruning | 后剪枝 | - |
| Status feature function | 状态特征函 | - |
| Eigenvalue decomposition | 特征值分解 | - |
| Underfitting | 欠拟合/欠配 | - |
| Non-negative matrix factorization | 非负矩阵分解 | - |
| Iterative Dichotomiser | 迭代二分器 | - |
| Closed -form | 闭式 | - |
| Structural risk minimization/SRM | 结构风险最小化 | - |
| Independent Component Analysis/ICA | 独立成分分析 | - |
| Sample space | 样本空间 | - |
| Cost Function | 成本函数 | - |
| Quantum Computing | 量子计算 | - |
| Generative Model | 生成模型 | - |
| Decision tree | 决策树/判定树 | - |
| Emotional analysis | 情绪分析 | - |
| Backpropagation Through Time | 通过时间的反向传播 | - |
| Hyperparameter | 超参数 | - |
| Cosine similarity | 余弦相似度 | - |
| Alpha-beta pruning | α-β剪枝 | - |
| Functional neuron | 功能神经元 | - |
| Homogeneous | 同质 | - |
| Semi-naive Bayes classifiers | 半朴素贝叶斯分类器 | - |
| Maximum Likelihood Estimation/MLE | 极大似然估计/极大似然法 | - |
| Flipping output | 翻转法 | - |
| Coding matrix | 编码矩阵 | - |
| Majority voting | 绝对多数投票法 | - |
| Von Neumann architecture | 冯 · 诺伊曼架构 | - |
| Class-imbalance | 类别不平衡 | - |
| Kernelized Linear Discriminant Analysis/KLDA | 核线性判别分析 | - |
| Association analysis | 关联分析 | - |
| Loss function | 损失函数 | - |
| Zero-data learning | 零数据学习 | - |
| Prior | 先验 | - |
| Pruning | 剪枝 | - |
| Negative class | 负类 | - |
| Specialization | 特化 | - |
| Co-occurrence | 同现 | - |
| Cross entropy | 交叉熵 | - |
| Lazy learning | 懒惰学习 | - |
| Ensemble pruning | 集成修剪 | - |
| Cross validation | 交叉验证 | - |
| Log odds/logit | 对数几率 | - |
| Multilayer Perceptron/MLP | 多层感知器 | - |
| Saddle point | 鞍点 | - |
| Adaptive Resonance Theory/ART | 自适应谐振理论 | - |
| Diversity measure | 多样性度量/差异性度量 | - |
| Soft voting | 软投票 | - |
| Discriminative model | 判别模型 | - |
| Area Under ROC Curve/AUCRoc | 曲线下面积 | - |
| Nominal attribute | 列名属性 | - |
| Micro-P | 微查准率 | - |
| Cut point | 截断点 | - |
| Log-likelihood | 对数似然 | - |
| Sparsity | 稀疏性 | - |
| Unsupervised learning | 无监督学习/无导师学习 | - |
| Agent | 代理 / 智能体 | - |
| Gibbs sampling | 吉布斯采样 | - |
| K-Nearest Neighbours Algorithm/KNNK | 近邻算法 | - |
| Moral graph | 道德图/端正图 | - |
| Positive class | 正类 | - |
| Receiver Operating Characteristic/ROC | 受试者工作特征 | - |
| Expectation-Maximization | 期望最大化 | - |
| Markov Chain Monte Carlo/MCMC | 马尔可夫链蒙特卡罗方法 | - |
| Leave-One-Out/LOO | 留一法 | - |
| Batch Normalization/BN | 批量归一化 | - |
| Turing Machine | 图灵机 | - |
| Bi-directional Long-Short Term Memory/Bi-LSTM | 双向长短期记忆 | - |
| Overfitting | 过拟合/过配 | - |
| No Free Lunch Theorem/NFL | 没有免费的午餐定理 | - |
| Exponential loss function | 指数损失函数 | - |
| Pseudo-label | 伪标记 | - |
| Recall | 查全率/召回率 | - |
| True negative | 真负类 | - |
| Least squares regression tree | 最小二乘回归树 | - |
| False Positive Rate/FPR | 假正例率 | - |
| Marginal independence | 边际独立性 | - |
| Comprehensibility | 可解释性 | - |
| Multi-class classification | 多分类 | - |
| Gini index | 基尼指数 | - |
| Ensemble learning | 集成学习 | - |
| Particle Swarm Optimization/PSO | 粒子群优化算法 | - |
| Unit-step function | 单位阶跃函数 | - |
| Weight | 权重 | - |
| Energy-based model | 基于能量的模型 | - |
| Momentum | 动量 | - |
| Squashing function | 挤压函数 | - |
| Pairwise | 成对型 | - |
| Threshold-moving | 阈值移动 | - |
| Latent Dirichlet Allocation | 隐狄利克雷分布 | - |
| linear chain conditional random field | 线性链条件随机场 | - |
| Continuous attribute | 连续属性 | - |
| Error rate | 错误率 | - |
| One-Dependent Estimator/ODE | 独依赖估计 | - |
| Symbolic learning | 符号学习 | - |
| Training instance | 训练示例/训练例 | - |
| Natural language generation/NLG | 自然语言生成 | - |
| Bootstrapping | 自助法 | - |
| Within-class scatter matrix | 类内散度矩阵 | - |
| Evolutionary computation | 演化计算 | - |
| Separating hyperplane | 分离超平面 | - |
| ICML | 国际机器学习会议 | - |
| Data mining | 数据挖掘 | - |
| Simulated annealing | 模拟退火 | - |
| Deduction | 演绎 | - |
| Score function | 评分函数 | - |
| Divergence | 散度 | - |
| Multi-document summarization | 多文档摘要 | - |
| Hypothesis test | 假设验证 | - |
| Base learning algorithm | 基学习算法 | - |
| Accumulated error backpropagation | 累积误差逆传播 | - |
| Feedforward Neural Networks/FNN | 前馈神经网络 | - |
| Hybrid computing | 混合计算 | - |
| Bi-partition | 二分法 | - |
| Random Forest Algorithm | 随机森林算法 | - |
| On-Policy | 在策略 | - |
| Misclassification cost | 误分类成本 | - |
| Threshold logic unit | 阈值逻辑单元 | - |
| Wasserstein GAN/WGANWasserstein | 生成对抗网络 | - |
| Kernel method | 核方法 | - |
| Soft margin maximization | 软间隔最大化 | - |
| Root node | 根结点 | - |
| Pairwise Markov property | 成对马尔可夫性 | - |
| Deep learning | 深度学习 | - |
| Dynamic programming | 动态规划 | - |
| Mixture of experts | 混合专家 | - |
| Maximal clique | 最大团 | - |
| Cluster | 簇/类/集群 | - |
| Backpropagation/BP | 反向传播 | - |
| Bayesian network | 贝叶斯网络 | - |
| Generalization | 泛化 | - |
| Global minimum | 全局最小 | - |
| Boltzmann machine | 玻尔兹曼机 | - |
| Neighbourhood Component Analysis/NCA | 近邻成分分析 | - |
| Symbolism | 符号主义 | - |
| Marginalization | 边际化 | - |
| Embedding | 嵌入 | - |
| Normalization | 归一化 | - |
| Quasi Newton method | 拟牛顿法 | - |
| Binomial test | 二项检验 | - |
| Log-linear regression | 对数线性回归 | - |
| Bootstrap sampling | 自助采样法/可重复采样/有放回采样 | - |
| Latent variable | 隐变量 | - |
| Undersampling | 欠采样 | - |
| Ground-truth | 真相/真实 | - |
| Adversarial Networks | 对抗网络 | - |
| Linear model | 线性模型 | - |
| Intra-cluster similarity | 簇内相似度 | - |
| Between-class scatter matrix | 类间散度矩阵 | - |
| Link function | 联系函数 | - |
| Forward stagewise algorithm | 前向分步算法 | - |
| potential function | 势函数 | - |
| Bayes Model Averaging/BMA | 贝叶斯模型平均 | - |
| Nonlinear model | 非线性模型 | - |
| Curse of dimensionality | 维数灾难 | - |
| Confidence | 置信度 | - |
| Crowdsourcing | 众包 | - |
| Word embedding | 词嵌入 | - |
| Part-of-speech tagging | 词性标注 | - |
| Graph theory | 图论 | - |
| Quantum computer | 量子计算机 | - |
| Recurrent Neural Network | 循环神经网络 | - |
| True positive | 真正类 | - |
| Regression | 回归 | - |
| Knowledge base | 知识库 | - |
| Domain adaption | 领域自适应 | - |
| Oblique decision tree | 斜决策树 | - |
| Parameter | 参数 | - |
| Transfer learning | 迁移学习 | - |
| Bias-Variance Dilemma | 偏差 - 方差困境 | - |
| Gradient Descent | 梯度下降 | - |
| Metric learning | 度量学习 | - |
| Meta-learner | 元学习器 | - |
| Treebank | 树库 | - |
| Classification and regression tree/CART | 分类与回归树 | - |
| Generator | 生成器 | - |
| Empirical entropy | 经验熵 | - |
| Cutting plane algorithm | 割平面法 | - |
| Manifold assumption | 流形假设 | - |
| Performance measure | 性能度量 | - |
| Named entity recognition | 命名实体识别 | - |
| Oversampling | 过采样 | - |
| Neural Turing Machine | 神经图灵机 | - |
| Sparse representation | 稀疏表征 | - |
| Hold-out | 留出法 | - |
| Contingency table | 列联表 | - |
| Precision | 查准率/准确率 | - |
| Committee-based learning | 基于委员会的学习 | - |
| End-to-End | 端到端 | - |
| Multi-response Linear Regression /MLR | 多响应线性回归 | - |
| Radial Basis Function/RBF | 径向基函数 | - |
| Slack variables | 松弛变量 | - |
| Zero-shot learning | 零次学习 | - |
| Distribution | 分布 | - |
| Word sense disambiguation | 词义消歧 | - |
| Correlation coefficient | 相关系数 | - |
| Linear Discriminant Analysis/LDA | 线性判别分析 | - |
| Minimal Description Length/MDL | 最小描述长度 | - |
| The least square method | 最小二乘法 | - |
| Representer theorem | 表示定理 | - |
| Learning rate | 学习率 | - |
| Downsampling | 下采样 | - |
| D-separation(Directed separation) | 有向分离 | - |
| Upsampling | 上采样 | - |
| Regularization | 正则化 | - |
| Sentiment analysis | 情感分析 | - |
| Data set | 数据集 | - |
| Objective function | 目标函数 | - |
| Unequal cost | 非均等代价 | - |
| Convergence | 收敛 | - |
| Convexity | 凸性 | - |
| Improved iterative scaling/IIS | 改进的迭代尺度法 | - |
| International Conference for Machine Learning/ICML | 国际机器学习大会 | - |
| Mean squared error | 均方误差 | - |
| Generative Adversarial Networks/GAN | 生成对抗网络 | - |
| Artificial General Intelligence/AGI | 通用人工智能 | - |
| Weighted voting | 加权投票法 | - |
| Multiple Dimensional Scaling | 多维缩放 | - |
| Log likelihood | 对数似然 | - |
| Computational Linguistics | 计算语言学 | - |
| Approximation | 近似 | - |
| Logistic RegressionLogistic | 回归 | - |
| support vector expansion | 支持向量展式 | - |
| Distance metric learning | 距离度量学习 | - |
| Inter-cluster similarity | 簇间相似度 | - |
| Off-Policy | 离策略 | - |
| Full-rank matrix | 满秩矩阵 | - |
| Hilbert space | 希尔伯特空间 | - |
| Gaussian kernel function | 高斯核函数 | - |
| Connectionism | 连结主义 | - |
| Numerical attribute | 数值属性 | - |
| Stratified sampling | 分层采样 | - |
| Computer vision | 计算机视觉 | - |
| Time Step | 时间步骤 | - |
| Concept drift | 概念漂移 | - |
| Learning by analogy | 类比学习 | - |
| Conditional entropy | 条件熵 | - |
| Deep Q-Learning | 深度Q学习 | - |
| Stability-plasticity dilemma | 可塑性-稳定性困境 | - |
| Empirical conditional entropy | 经验条件熵 | - |
| Hidden dynamic model | 隐动态模型 | - |
| Conversational agent | 会话智能体 | - |
| Tensor | 张量 | - |
| Cost curve | 成本曲线 | - |
| Isometric Mapping/Isomap | 等度量映射 | - |
| Simultaneous localization and mapping | 同步定位与地图构建 | - |
| Empirical error | 经验误差 | - |
| Macron-P | 宏查准率 | - |
| Indicator function | 指示函数 | - |
| Occam's razor | 奥卡姆剃刀 | - |
| Information entropy | 信息熵 | - |
| Computation Cost | 计算成本 | - |
| Inductive learning | 归纳学习 | - |
| Game theory | 博弈论 | - |
| Re-sampling | 重采样法 | - |
| Micro-R | 微查全率 | - |
| Linear Regression | 线性回归 | - |
| Self-Driving | 自动驾驶 | - |
| Margin theory | 间隔理论 | - |
| Generalized linear model | 广义线性模型 | - |
| Class-conditional probability | 类条件概率 | - |
| Nuclear norm | 核范数 | - |
| Recursive neural network | 递归神经网络 | - |
| Conditional random field/CRF | 条件随机场 | - |
| Minimax game | 极小极大博弈 | - |
| Hidden Markov Model/HMM | 隐马尔可夫模型 | - |
| Dynamic Fusion | 动态融合 | - |
| VC TheoryVC | 维理论 | - |
| Generalization error bound | 泛化误差上界 | - |
| Inductive bias | 归纳偏好 | - |
| Learning Vector Quantization/LVQ | 学习向量量化 | - |
| Soft margin | 软间隔 | - |
| Polynomial kernel function | 多项式核函数 | - |
| Multiple linear regression | 多元线性回归 | - |
| Conditional risk | 条件风险 | - |
| Automatic summarization | 自动摘要 | - |
| Rule Engine | 规则引擎 | - |
| Attribute value | 属性值 | - |
| Principle of multiple explanations | 多释原则 | - |
| Understandability | 可理解性 | - |
| Norm | 范数 | - |
| Representation learning | 表征学习 | - |
| Proximal Gradient Descent/PGD | 近端梯度下降 | - |
| Odds | 几率 | - |
| Competitive learning | 竞争型学习 | - |
| Empirical risk | 经验风险 | - |
| Feature selection | 特征选择 | - |
| Distance measure | 距离度量 | - |
| Random walk | 随机漫步 | - |
| Smoothing | 平滑 | - |
| COLT | 国际学习理论会议 | - |
| Structural risk | 结构风险 | - |
| Individual learner | 个体学习器 | - |
| Splitting variable | 切分变量 | - |
| Artificial Intelligence/AI | 人工智能 | - |
| Non-metric distance | 非度量距离 | - |
| Convolutional neural network/CNN | 卷积神经网络 | - |
| Feature engineering | 特征工程 | - |
| Hard voting | 硬投票 | - |
收藏成功
(推荐电脑端登录)
右上角查看我的术语->我的标签