收藏成功
(推荐电脑端登录)
右上角查看我的术语->我的标签
| 原文 | 译文 | 详情 |
|---|---|---|
| 中文 | 英文 | - |
| 准确率 | accuracy | - |
| 激活函数 | Activation function | - |
| 曲线下面积 | AUC | - |
| 真正类 | Ture Positive | - |
| 真正类 | true positive,TP | - |
| 假正类 | False Positives | - |
| 假正类 | false positive,FP | - |
| 反向传播 | Backpropagation | - |
| 基线 | Baseline | - |
| 批量大小 | batch size | - |
| 偏置 | bias | - |
| 二元分类器 | binary classification | - |
| 标定层 | calibration layer | - |
| 候选采样 | candidate sampling | - |
| 负强化 | negative reinforcement | - |
| 检查点 | checkpoint | - |
| 类别 | class | - |
| 类别不平衡数据集 | class-imbalanced data set | - |
| 分类模型 | classification | - |
| 回归模型 | regression model | - |
| 分类阈值 | classification threshold | - |
| 混淆矩阵 | confusion matrix | - |
| 精度 | precision | - |
| 召回率 | recall | - |
| 连续特征 | continuous feature | - |
| 离散特征 | discrete feature | - |
| 收敛 | convergence | - |
| 凸函数 | concex function | - |
| 成本 | cost | - |
| 交叉熵 | cross-entropy | - |
| 困惑度 | perplexity | - |
| 数据集 | data set | - |
| 决策边界 | decision boundary | - |
| 深度模型 | deep model | - |
| 宽度模型对照 | wide model | - |
| 密集特征 | dense feature | - |
| 张量 | tensor | - |
| 稀疏特征 | sparse feature | - |
| 派生特征 | derived feature | - |
| 合成特征 | synthetic feature | - |
| 正则化 | dropout | - |
| 正则化 | regularization | - |
| 动态模型 | dynamic model | - |
| 早期停止法 | early stopping | - |
| 验证数据集 | validation data set | - |
| 嵌入 | embeddings | - |
| 经验风险最小化 | empirical risk minimization,ERM | - |
| 结构风险最小化 | structual risk minimization | - |
| 结构风险最小化 | structural risk minimization/SRM | - |
| 集成 | ensemble | - |
| 评估器 | Estimator | - |
| 样本 | example | - |
| 标注样本 | labeled example | - |
| 无标注样本 | unlabeled example | - |
| 假负类 | false negative,FN | - |
| 假正类率 | false positive rate,FP rate | - |
| ROC 曲线 | ROC curve | - |
| 特征 | feature | - |
| 特征列 | feature columns/FeatureColumn | - |
| 命名空间 | namespace | - |
| 特征交叉 | feature cross | - |
| 特征工程 | feature engineering | - |
| 特征集 | feature set | - |
| 特征定义 | feature spec | - |
| 完全 softmax | full softmax | - |
| 泛化 | generalization | - |
| 广义线性模型 | generalized linear model | - |
| 梯度 | gradient | - |
| 梯度截断 | gradient clipping | - |
| 梯度下降 | gradient descent | - |
| 图 | graph | - |
| 启发式 | heuristic | - |
| 隐藏层 | hidden layer | - |
| 折页损失函数 | Hinge loss | - |
| 测试数据 | holdout data | - |
| 测试数据集 | test data set | - |
| 超参数 | hyperparameter | - |
| 学习率 | learning rate | - |
| 独立同分布 | independently and identically distributed,i.i.d | - |
| 推断 | inference | - |
| 输入层 | input layer | - |
| 评分者间一致性 | inter-rater agreement | - |
| 标注者间信度 | inter-annotator agreement | - |
| 评分者间信度 | inter-rater reliability | - |
| Kernel 支持向量机 | Kernel Support Vector Machines/KSVM | - |
| L1 损失函数 | L1 loss | - |
| L1 正则化 | L1 regularization | - |
| L2 损失 | L2 loss | - |
| L2 正则化 | L2 regularization | - |
| 标签 | label | - |
| 正则化率 | lambda | - |
| 正则化率 | regularization rate | - |
| 层 | layer | - |
| 最小二乘回归 | least squares regression | - |
| 线性回归 | linear regression | - |
| logistic 回归 | logistic regression | - |
| 对数损失函数 | Log Loss | - |
| 机器学习 | machine learning | - |
| 均方误差 | Mean Squared Error/MSE | - |
| 小批量 | mini-batch | - |
| 小批量随机梯度下降 | mini-batch stochastic gradient descent | - |
| 模型 | model | - |
| 模型训练 | model training | - |
| 动量 | Momentum | - |
| 多类别 | multi-class | - |
| 负类 | negative class | - |
| 神经网络 | neural network | - |
| 神经元 | neuron | - |
| 归一化 | normalization | - |
| 目标 | objective | - |
| 离线推断 | offline inference | - |
| one-hot 编码 | one-hot encoding | - |
| 一对多 | one-vs.-all | - |
| 在线推断 | online inference | - |
| 运算 | Operation/op | - |
| 优化器 | optimizer | - |
| 稀疏性/正则化 | Ftrl | - |
| 异常值 | outlier | - |
| 输出层 | output layer | - |
| 过拟合 | overfitting | - |
| 参数 | parameter | - |
| 参数服务器 | Parameter Server/PS | - |
| 参数更新 | parameter update | - |
| 偏导数 | partial derivative | - |
| 分区策略 | partitioning strategy | - |
| 性能 | performance | - |
| 流程 | pipeline | - |
| 正类 | positive class | - |
| 预测 | prediction | - |
| 预测偏差 | prediction bias | - |
| 预制评估器 | pre-made Estimator | - |
| 预训练模型 | pre-trained model | - |
| 先验信念 | prior belief | - |
| 队列 | queue | - |
| 秩 | rank | - |
| 评分者 | rater | - |
| 修正线性单元 | Rectified Linear Unit/ReLU | - |
| 受试者工作特征曲线 | receiver operating characteristic/ROC Curve | - |
| 根目录 | root directory | - |
| 均方根误差 | Root Mean Squared Error/RMSE | - |
| 缩放 | scaling | - |
| 序列模型 | sequence model | - |
| 会话 | session | - |
| Sigmoid 函数 | sigmoid function | - |
| 平方损失 | squared loss | - |
| 静态模型 | static model | - |
| 稳态 | stationarity | - |
| 步 | step | - |
| 步长 | step size | - |
| 学习速率 | learning rate | - |
| 随机梯度下降 | stochastic gradient descent/SGD | - |
| 摘要 | summary | - |
| 监督式机器学习 | supervised machine learning | - |
| 张量处理单元 | Tensor Processing Unit,TPU | - |
| 张量形状 | Tensor shape | - |
| 张量大小 | Tensor size | - |
| 测试集 | test set | - |
| 训练 | training | - |
| 训练集 | training set | - |
| 真负类 | true negative,TN | - |
| 真正类率 | true positive rate,TP rate | - |
| 无标签样本 | unlabeled example | - |
| 无监督机器学习 | unsupervised machine learning | - |
| 主成分分析 | principal component analysis,PCA | - |
| 验证集 | validation set | - |
| 权重 | weight | - |
| 宽模型 | wide model | - |
| 调试 | debug | - |
收藏成功
(推荐电脑端登录)
右上角查看我的术语->我的标签